graficos, estatitsticas e filtros

This commit is contained in:
2025-12-11 14:18:03 -01:00
parent 490c88085a
commit 14dee58ab2
5 changed files with 286 additions and 69 deletions

View File

@@ -1,13 +1,15 @@
# pyright: basic
import datetime
import os
import sys
import pandas as pd
import numpy as np
import pandas as pd
import utils
STAT_HEADER ="""=== Terramotos ===
== Estatísticas ==
STAT_HEADER = """=== Terramotos ===
== Estatísticas ==
"""
STAT_MENU = """[1] Média
@@ -26,7 +28,7 @@ FILTER_CHOICES = """[1] Magnitudes
"""
CHOICE = {"1": "Magnitudes", "2": "Distancia","3": "Prof"}
CHOICE = {"1": "Magnitudes", "2": "Distancia", "3": "Prof"}
def filter_submenu(type: str):
@@ -124,7 +126,7 @@ def stat_menu(df: pd.DataFrame):
def average(df: pd.DataFrame, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -136,7 +138,7 @@ def average(df: pd.DataFrame, filter_by):
def variance(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -149,12 +151,12 @@ def variance(df, filter_by):
def std_dev(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
try:
return np.std(values)
except:
@@ -162,27 +164,27 @@ def std_dev(df, filter_by):
def max_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.max(values)
def min_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.min(values)
def moda(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -191,7 +193,7 @@ def moda(df, filter_by):
uniques, count = np.unique(values, return_counts=True)
uniques_list = list(zip(uniques, count))
return sorted(uniques_list, reverse=True ,key=lambda x: x[1])[0][0]
return sorted(uniques_list, reverse=True, key=lambda x: x[1])[0][0]
def _unpack_mags(arr: np.ndarray):
@@ -201,3 +203,128 @@ def _unpack_mags(arr: np.ndarray):
newVals = np.append(newVals, float(m["Magnitude"]))
return newVals
def filter_mags(data, more_than=None, less_than=None):
"""Filters by magnitudes a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param more_than(optional): Filter for magnitudes above threshold
:param after(optional): Filters for dates after set date
:returns: Returns a filtered pandas DataFrame
"""
v = data.drop_duplicates(subset="ID", keep="first")
_dict = {"Data": [], "MagL": []}
for idx, c in v.iterrows():
_dict["Data"].append(str(c.Data))
_dict["MagL"].append(utils.extract_mag_l(c.Magnitudes))
_df = pd.DataFrame.from_dict(_dict)
if more_than:
_df = _df[_df["MagL"] >= more_than]
if less_than:
_df = _df[_df["MagL"] <= less_than]
return _df
def filter_date(
data: pd.DataFrame,
before: datetime.datetime | None = None,
after: datetime.datetime | None = None,
) -> pd.DataFrame:
"""Filters by date a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param before(optional): Filter for dates before set date
:param after(optional): Filters for dates after set date
:returns: Returns a filtered pandas DataFrame
"""
v = data
for idx, c in v.iterrows():
v.at[idx, "Data"] = datetime.datetime.fromisoformat(c.Data)
if after:
v = v[v["Data"] >= after]
if before:
v = v[v["Data"] >= before]
return v
def filter_depth(
data: pd.DataFrame,
less_than: float | None = None,
more_than: float | None = None,
) -> pd.DataFrame:
"""Filters by the depth a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param less_than(optional): Filter for depths below the threshold
:param after(optional): Filters for depths deeper than threshold
:returns: Returns a filtered pandas DataFrame
"""
v = data.drop_duplicates(subset="ID", keep="first")
if more_than:
v = v[v["Profundidade"] >= more_than]
if less_than:
v = v[v["Profundidade"] >= less_than]
return v
def filter_gap(
data: pd.DataFrame,
threshold: int,
) -> pd.DataFrame:
"""Filters by the depth a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param threshold: Filter for GAPS below the threshold
:returns: Returns a filtered pandas DataFrame
"""
v = data.drop_duplicates(subset="ID", keep="first")
v = v[v["Gap"] <= threshold]
return v
def filter_sz(
data: pd.DataFrame,
) -> pd.DataFrame:
"""Filters by SZ plane a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:returns: Returns a filtered pandas DataFrame
"""
v = data[data["SZ"].notna()]
return v
def filter_vz(
data: pd.DataFrame,
) -> pd.DataFrame:
"""Filters by VZ plane a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:returns: Returns a filtered pandas DataFrame
"""
v = data[data["VZ"].notna()]
return v
def _preprare_days(data):
c = data.Data.to_list()
for idx, d in enumerate(c):
aux = datetime.datetime.fromisoformat(d)
c[idx] = datetime.datetime.strftime(aux, "%Y-%m-%d")
return c
def _preprare_months(data):
c = data.Data.to_list()
for idx, d in enumerate(c):
aux = datetime.datetime.fromisoformat(d)
c[idx] = datetime.datetime.strftime(aux, "%Y-%m")
return c