fhiiiofhweoi

aaaaaaaa
This commit is contained in:
Paulo Jorge Medeiros Alexandre
2025-12-12 20:29:23 -01:00
parent 991d372baf
commit 2573cfaf13
7 changed files with 455 additions and 31 deletions

View File

@@ -1,5 +1,3 @@
# pyright: basic
import os
import sys
@@ -16,6 +14,7 @@ STAT_MENU = """[1] Média
[4] Máximo
[5] Mínimo
[6] Moda
[T] Estatísticas Temporais (T5)
[Q] Voltar ao menu principal
"""
@@ -43,6 +42,120 @@ def filter_submenu(type: str):
return None
# -- t5 funcs
def _get_unique_events(df: pd.DataFrame) -> pd.DataFrame:
return df.drop_duplicates(subset="ID", keep='first')
def convert_to_datetime(df: pd.DataFrame) -> pd.DataFrame:
# Converte coluna Data para objetos datetime
df = df.copy()
df['Data'] = pd.to_datetime(df['Data'], format='mixed')
return df
def events_per_period(df: pd.DataFrame, period: str):
# Calcula o número de eventos por dia ('D') ou mês ('M')
df = convert_to_datetime(df)
events = _get_unique_events(df)
if period == 'M':
period = 'ME'
res = events.set_index('Data').resample(period).size()
return res.index, res.values
def stats_depth_month(df: pd.DataFrame):
# Calcula estatísticas de Profundidade por Mês
df = convert_to_datetime(df)
events = _get_unique_events(df)
grouped = events.set_index('Data').resample('ME')['Profundidade']
stats_df = pd.DataFrame({
'Mean': grouped.mean(),
'Std': grouped.std(),
'Median': grouped.median(),
'Q1': grouped.quantile(0.25),
'Q3': grouped.quantile(0.75),
'Min': grouped.min(),
'Max': grouped.max()
})
return stats_df
def stats_mag_month(df: pd.DataFrame):
# Calcula estatísticas de Magnitude por Mês
df = convert_to_datetime(df)
events = _get_unique_events(df)
def get_max_mag(mags):
vals = [float(m['Magnitude']) for m in mags if 'Magnitude' in m]
return max(vals) if vals else np.nan
events = events.copy()
events['MaxMag'] = events['Magnitudes'].apply(get_max_mag)
grouped = events.set_index('Data').resample('ME')['MaxMag']
stats_df = pd.DataFrame({
'Mean': grouped.mean(),
'Std': grouped.std(),
'Median': grouped.median(),
'Q1': grouped.quantile(0.25),
'Q3': grouped.quantile(0.75),
'Min': grouped.min(),
'Max': grouped.max()
})
return stats_df
# -- t5 menu
T5_MENU = """[1] Número de eventos por dia
[2] Número de eventos por mês
[3] Estatísticas Profundidade por mês
[4] Estatísticas Magnitude por mês
[Q] Voltar
"""
def t5_menu(df: pd.DataFrame):
while True:
os.system("cls" if sys.platform == "windows" else "clear")
print(STAT_HEADER + "\n" + " == T5: Estatísticas Temporais ==\n" + T5_MENU)
usrIn = input("Opção: ").lower()
match usrIn:
case "1":
dates, counts = events_per_period(df, 'D')
print("\nEventos por Dia:")
print(pd.DataFrame({'Data': dates, 'Contagem': counts}).to_string(index=False))
case "2":
dates, counts = events_per_period(df, 'M')
print("\nEventos por Mês:")
print(pd.DataFrame({'Data': dates, 'Contagem': counts}).to_string(index=False))
case "3":
st = stats_depth_month(df)
print("\nEstatísticas Profundidade por Mês:")
print(st.to_string())
case "4":
st = stats_mag_month(df)
print("\nEstatísticas Magnitude por Mês:")
print(st.to_string())
case "q":
return
case _:
pass
input("\n[Enter] para continuar...")
# -- stat menu
def stat_menu(df: pd.DataFrame):
inStats = True
while inStats:
@@ -51,6 +164,10 @@ def stat_menu(df: pd.DataFrame):
usrIn = input("Opção: ").lower()
match usrIn:
case "t":
t5_menu(df)
continue
case "1":
c = filter_submenu("Média")
@@ -106,7 +223,7 @@ def stat_menu(df: pd.DataFrame):
continue
case "6":
c = filter_submenu("Mínimo")
c = filter_submenu("Moda")
if c is not None:
retValue = moda(df, c)
@@ -120,11 +237,12 @@ def stat_menu(df: pd.DataFrame):
case _:
pass
input("Clica `Enter` para continuar")
def average(df: pd.DataFrame, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = _get_unique_events(df)
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -136,7 +254,7 @@ def average(df: pd.DataFrame, filter_by):
def variance(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = _get_unique_events(df)
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -149,7 +267,7 @@ def variance(df, filter_by):
def std_dev(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = _get_unique_events(df)
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -162,7 +280,7 @@ def std_dev(df, filter_by):
def max_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = _get_unique_events(df)
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -172,7 +290,7 @@ def max_v(df, filter_by):
def min_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = _get_unique_events(df)
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
@@ -182,7 +300,7 @@ def min_v(df, filter_by):
def moda(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
events = _get_unique_events(df)
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":