Files
prog-team-proj/utils/parser.py

262 lines
6.3 KiB
Python

# pyright: basic
import io
from collections import defaultdict
from datetime import datetime
import pandas as pd
# --- globals ---
DIST_IND = {"L": "Local", "R": "Regional", "D": "Distante"}
TYPE = {"Q": "Quake", "V": "Volcanic", "U": "Unknown", "E": "Explosion"}
# --- helper funcs ---
def is_blank(l: str) -> bool:
return len(l.strip(" ")) == 0
def parse_flt(v: str) -> float | None:
try:
t = float(v)
return t
except ValueError:
return None
def parse_int(v: str) -> int | None:
try:
t = int(v)
return t
except ValueError:
return None
def into_dataframe(data) -> pd.DataFrame:
if len(data) == 0:
return pd.DataFrame()
aux = {k: [] for k in data.keys()}
for k, v in data.items():
aux[k].append(v)
return pd.DataFrame(data=aux)
def _concat(preamble, df: pd.DataFrame):
for k, v in preamble.items():
df.insert(len(df.columns) - 1, k, [v for _ in range(len(df))])
return df
def validate_no_stations(expected: int, stationsDF: pd.DataFrame) -> bool:
uniqueStations = stationsDF["Estacao"].nunique()
return expected == uniqueStations
# --- principal ---
def parse(fname):
fp = open(fname)
data = [l for l in fp.read().split("\n")]
chunks = boundaries(data)
df = pd.DataFrame()
for idx, c in enumerate(chunks):
a = parse_chunk(data[c[0] : c[1]])
aux = pd.concat([df, a], axis=0, ignore_index=True)
df = aux
fp.close()
return df
def boundaries(data: list[str]):
boundaries = []
start = None
for idx, l in enumerate(data):
if start is None:
if not is_blank(l):
start = idx
else:
if is_blank(l):
boundaries.append((start, idx))
start = None
return boundaries
def parse_chunk(chunk_lines: list[str]):
hIdx = None
for idx, l in enumerate(chunk_lines):
if l[-1] == "7":
hIdx = idx
break
preambleRet = _parse_preamble(chunk_lines[:hIdx])
phaseRet = _parse_type_7(chunk_lines[hIdx:])
if not validate_no_stations(preambleRet["Estacoes"], phaseRet):
pass
return _concat(preambleRet, phaseRet)
def _parse_preamble(hLines: list[str]):
aux = defaultdict(list)
for line in hLines:
match line[-1]:
case "1":
aux[1].append(line)
case "3":
aux[3].append(line)
case "6":
aux[6].append(line)
case "E":
aux["E"].append(line)
case "I":
aux["I"].append(line)
case "F":
pass
# aux["F"].append(line)
case _:
pass
headerDict = dict()
for k, v in aux.items():
if len(v) != 0:
headerDict.update(FUNCS[k](v))
return headerDict
def _parse_type_1(data: list[str]):
aux = data[0]
y = int(aux[1:5])
mo = int(aux[6:8])
d = int(aux[8:10])
h = int(aux[11:13])
m = int(aux[13:15])
s = int(aux[16:18])
mil = int(aux[19]) * 10**5
dt = datetime(y, mo, d, h, m, s, mil)
dist_ind = DIST_IND[aux[21]]
ev_type = TYPE[aux[22]]
lat = float(aux[23:30])
long = float(aux[30:38])
depth = float(aux[38:43])
no_stat = int(aux[48:51])
hypo = {
"Data": dt.isoformat(),
"Distancia": dist_ind,
"Tipo Evento": ev_type,
"Latitude": lat,
"Longitude": long,
"Profundidade": depth,
"Estacoes": no_stat,
"Magnitudes": list(),
}
for l in data:
hypo["Magnitudes"] = hypo["Magnitudes"] + _parse_mag(l)
return hypo
def _parse_mag(line: str):
magnitudes = []
base = 55
while base < 79:
m = line[base : base + 4]
mt = line[base + 4]
if not is_blank(m):
magnitudes.append({"Magnitude": m, "Tipo": mt})
base += 8
return magnitudes
def _parse_type_3(data: list[str]):
comments = {}
for line in data:
if line.startswith(" SENTIDO"):
c, v = line[:-2].strip().split(": ", maxsplit=1)
v = v.split(",")[0]
comments[c.capitalize()] = v
elif line.startswith(" REGIAO"):
c, vals = line[:-2].strip().split(": ", maxsplit=1)
_d = {}
for v in vals.split(","):
if v.startswith("SZ"):
comments["SZ"] = int(v[2:])
elif v.startswith("VZ"):
comments["VZ"] = int(v[2:])
elif v.startswith("FE"):
comments["FZ"] = v[2:]
else:
comments["Regiao"] = v
return comments
def _parse_type_6(data: list[str]):
waves = []
for l in data:
waves.append(l.strip().split(" ")[0])
return {"Onda": waves}
def _parse_type_7(data: list[str]):
aux = io.StringIO("\n".join(data))
dados = pd.read_fwf(
aux,
colspecs=[
(1, 5),
(6, 8),
(10, 15),
(18, 20),
(20, 22),
(23, 28),
(34, 38),
(71, 75),
],
)
dados.rename(
columns={
"STAT": "Estacao",
"SP": "Componente",
"PHASW": "Tipo Onda",
"HR": "Hora",
"MM": "Min",
"SECON": "Seg",
"AMPL": "Amplitude",
" DIST": "Distancia Epicentro",
},
inplace=True,
)
return dados
def _parse_type_e(data: list[str]):
aux = data[0]
error = {
"Gap": int(aux[5:8]),
"Origin": float(aux[14:20]),
"Error_lat": float(aux[24:30]),
"Error_long": float(aux[32:38]),
"Error_depth": float(aux[38:43]),
"Cov_xy": float(aux[43:55]),
"Cov_xz": float(aux[55:67]),
"Cov_yz": float(aux[67:79]),
}
return error
def _parse_type_i(data: list[str]):
aux = data[0]
return {"ID": int(aux[60:74])}
FUNCS = {
1: _parse_type_1,
3: _parse_type_3,
6: _parse_type_6,
"E": _parse_type_e,
"I": _parse_type_i,
}