Files
prog-team-proj/utils/stats.py
2025-11-09 20:50:28 -01:00

187 lines
4.6 KiB
Python

# pyright: basic
import os
import pandas as pd
import numpy as np
STAT_HEADER ="""=== Earthquakes ===
== Estatísticas ==
"""
STAT_MENU = """[1] Média
[2] Variância
[3] Desvio padrão
[4] Máximo
[5] Mínimo
[6] Moda
[Q] Voltar ao menu principal
"""
FILTER_CHOICES = """[1] Magnitudes
[2] Distância
[3] Profundidade
"""
CHOICE = {"1": "Magnitudes", "2": "Distancia","3": "Prof"}
def filter_submenu(type: str):
os.system("cls")
print(f"{STAT_HEADER}\n = {type} = ")
print(FILTER_CHOICES)
choice = input("Qual dos valores: ")
try:
usrChoice = CHOICE[choice]
return usrChoice
except KeyError:
return None
def stat_menu(df: pd.DataFrame):
inStats = True
while inStats:
os.system("cls")
print(STAT_HEADER + "\n" + STAT_MENU)
usrIn = input("Opção: ").lower()
match usrIn:
case "1":
# TODO: verificar se estamos a tratar de numeros ou strings
c = filter_submenu("Média")
if c is not None:
retValue = average(df, c)
print(f"A média de {c} é {retValue}")
else:
continue
case "2":
c = filter_submenu("Variância")
if c is not None:
retValue = variance(df, c)
print(f"A variância dos dados de {c} é {retValue}")
else:
continue
case "3":
# TODO: verificar se estamos a tratar de numeros ou strings
c = filter_submenu("Desvio Padrão")
if c is not None:
retValue = std_dev(df, c)
print(f"O desvio padrão de {c} é {retValue}")
else:
continue
case "4":
c = filter_submenu("Máximo")
if c is not None:
retValue = max_v(df, c)
print(f"O valor máximo em {c} é {retValue}")
else:
continue
case "5":
c = filter_submenu("Mínimo")
if c is not None:
retValue = min_v(df, c)
print(f"O valor mínimo em {c} é {retValue}")
else:
continue
case "6":
c = filter_submenu("Mínimo")
if c is not None:
retValue = moda(df, c)
print(f"O valor moda em {c} é {retValue}")
else:
continue
case "q":
inStats = False
continue
case _:
pass
input("Clica Enter para continuar")
def average(df: pd.DataFrame, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.average(values)
def variance(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.var(values)
def std_dev(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.std(values)
def max_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.max(values)
def min_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.min(values)
def moda(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
uniques, count = np.unique(values, return_counts=True)
uniques_list = list(zip(uniques, count))
return sorted(uniques_list, reverse=True ,key=lambda x: x[1])[0][0]
def _unpack_mags(arr: np.ndarray):
newVals = np.empty(0)
for v in arr:
for m in v:
newVals = np.append(newVals, float(m["Magnitude"]))
return newVals