Files
prog-team-proj/parser.py
2025-11-03 23:31:30 -01:00

184 lines
4.9 KiB
Python

import io
import warnings
from collections import defaultdict
from datetime import datetime
import pandas as pd
def is_blank(l: str) -> bool:
return len(l.strip(" ")) == 0
def parse_flt(v:str) -> float | None:
try:
t = float(v)
return t
except ValueError:
return None
def parse_int(v:str) -> int | None:
try:
t = int(v)
return t
except ValueError:
return None
def into_dataframe(data) -> pd.DataFrame:
if len(data) == 0:
return pd.DataFrame()
aux = {k: [] for k in data.keys()}
for (k,v) in data.items():
aux[k].append(v)
return pd.DataFrame(data=aux)
# ------------ principal
def parse(fname="dados.txt"):
fp = open(fname)
data = [l for l in fp.read().split("\n")]
chunks = boundaries(data)
df = pd.DataFrame()
for (idx,c) in enumerate(chunks):
a = parse_chunk(data[c[0]:c[1]], idx)
aux = pd.concat([df, a], axis=0, ignore_index=True)
df = aux
print(df)
aux = df.loc[df["ID"] == 14]
print(aux)
fp.close()
return df
def boundaries(data: list[str]):
boundaries = []
start = None
for (idx,l) in enumerate(data):
if start is None:
if not is_blank(l):
start = idx
else:
if is_blank(l):
boundaries.append((start,idx))
start = None
return boundaries
def parse_chunk(chunk_lines: list[str], iD):
hIdx = None
for (idx, l) in enumerate(chunk_lines):
if l[-1] == "7":
hIdx = idx
break
headersRet = parse_header(chunk_lines[:hIdx])
phaseRet = parse_type_7(chunk_lines[hIdx:])
hDF = into_dataframe(headersRet)
hDF["ID"] = iD
phaseRet["ID"] = iD
return pd.concat([hDF, phaseRet])
def parse_header(hLines: list[str]):
aux = defaultdict(list)
for line in hLines:
match line[-1]:
case "1":
aux[1].append(line)
case "3":
aux[3].append(line)
case "6":
aux[6].append(line)
case "E":
aux["E"].append(line)
case "I":
aux["I"].append(line)
case "F":
aux["F"].append(line)
case unknown:
warnings.warn(f"header type not implemented: {unknown}")
headerDict = dict()
for (k,v) in aux.items():
if len(v) != 0:
headerDict.update(FUNCS[k](v))
return headerDict
def parse_mag(line: str):
magnitudes = []
base = 55
while base < 79:
m = line[base:base+4]
mt = line[base+4]
if not is_blank(m):
magnitudes.append({"M": m, "T": mt})
base += 8
return magnitudes
def parse_type_1(data: list[str]):
aux = data[0]
y = int(aux[1:5])
mo = int(aux[6:8])
d = int(aux[8:10])
h = int(aux[11:13])
m = int(aux[13:15])
s = int(aux[16:18])
mil = int(aux[19]) * 10**5
dt = datetime(y,mo,d,h,m,s,mil)
dist_ind = aux[21]
eId = aux[22]
lat = float(aux[23:30])
long = float(aux[30:38])
depth = float(aux[38:43])
rep_ag = aux[45:48]
hypo = {"DateTime": dt.isoformat(), "Distance Indicator": dist_ind, "Event ID": eId, "Lat": lat, "Long": long, "Depth": depth, "Agency": rep_ag, "Magnitudes": list()}
for l in data:
hypo["Magnitudes"] = hypo["Magnitudes"] + parse_mag(l)
return hypo
def parse_type_3(data: list[str]):
comments = []
for line in data:
comments.append(line[:-2].strip())
return {"Comments": comments}
def parse_type_6(data: list[str]):
waves = []
for l in data:
waves.append(l.strip().split(" ")[0])
return {"Wave": waves}
def parse_type_7(data: list[str]):
aux = io.StringIO("\n".join(data))
dados = pd.read_fwf(aux, colspecs=[(1,5), (6,8), (9,10), (10,15), (16,17), (18,22), (23,28), (29,33), (34,40), (41,45), (46,50), (51,56), (57,60), (61,63), (64,68), (69,70), (72,75), (76,79)])
return dados
def parse_type_e(data: list[str]):
aux = data[0]
error = {"Gap": int(aux[5:8]), "Origin": float(aux[14:20]), "Error_lat": float(aux[24:30]), "Error_long": float(aux[32:38]), "Error_depth": float(aux[38:43]), "Cov_xy": float(aux[43:55]), "Cov_xz": float(aux[55:67]), "Cov_yz": float(aux[67:79])}
return error
def parse_type_f(data: list[str]):
return {}
def parse_type_i(data: list[str]):
aux = data[0]
dt = datetime.strptime(aux[12:26], "%y-%m-%d %H:%M")
return {"Action": aux[8:11], "Action Extra": {"Date": dt.isoformat(), "OP": aux[30:35].strip(), "Status": aux[42:57].strip(), "ID":int(aux[60:74])}}
FUNCS = {1: parse_type_1, 3: parse_type_3, 6: parse_type_6, "E": parse_type_e, "F": parse_type_f, "I": parse_type_i}
parse()