204 lines
5.1 KiB
Python
204 lines
5.1 KiB
Python
# pyright: basic
|
|
|
|
import os
|
|
import sys
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
STAT_HEADER ="""=== Terramotos ===
|
|
== Estatísticas ==
|
|
"""
|
|
|
|
STAT_MENU = """[1] Média
|
|
[2] Variância
|
|
[3] Desvio padrão
|
|
[4] Máximo
|
|
[5] Mínimo
|
|
[6] Moda
|
|
|
|
[Q] Voltar ao menu principal
|
|
"""
|
|
|
|
FILTER_CHOICES = """[1] Magnitudes
|
|
[2] Distância
|
|
[3] Profundidade
|
|
|
|
"""
|
|
|
|
CHOICE = {"1": "Magnitudes", "2": "Distancia","3": "Prof"}
|
|
|
|
|
|
def filter_submenu(type: str):
|
|
os.system("cls" if sys.platform == "windows" else "clear")
|
|
print(f"{STAT_HEADER}\n = {type} = ")
|
|
print(FILTER_CHOICES)
|
|
|
|
choice = input("Qual dos valores: ")
|
|
|
|
try:
|
|
usrChoice = CHOICE[choice]
|
|
return usrChoice
|
|
except KeyError:
|
|
return None
|
|
|
|
|
|
def stat_menu(df: pd.DataFrame):
|
|
inStats = True
|
|
while inStats:
|
|
os.system("cls" if sys.platform == "windows" else "clear")
|
|
print(STAT_HEADER + "\n" + STAT_MENU)
|
|
usrIn = input("Opção: ").lower()
|
|
|
|
match usrIn:
|
|
case "1":
|
|
c = filter_submenu("Média")
|
|
|
|
if c is not None:
|
|
retValue = average(df, c)
|
|
if retValue:
|
|
print(f"A média de {c} é {retValue}")
|
|
else:
|
|
print("Um erro aconteceu. Nada a apresentar de momento.")
|
|
else:
|
|
continue
|
|
|
|
case "2":
|
|
c = filter_submenu("Variância")
|
|
|
|
if c is not None:
|
|
retValue = variance(df, c)
|
|
if retValue:
|
|
print(f"A variância dos dados de {c} é {retValue}")
|
|
else:
|
|
print("Um erro aconteceu. Nada a apresentar de momento.")
|
|
else:
|
|
continue
|
|
|
|
case "3":
|
|
c = filter_submenu("Desvio Padrão")
|
|
|
|
if c is not None:
|
|
retValue = std_dev(df, c)
|
|
if retValue:
|
|
print(f"O desvio padrão de {c} é {retValue}")
|
|
else:
|
|
print("Um erro aconteceu. Nada a apresentar de momento.")
|
|
else:
|
|
continue
|
|
|
|
case "4":
|
|
c = filter_submenu("Máximo")
|
|
|
|
if c is not None:
|
|
retValue = max_v(df, c)
|
|
print(f"O valor máximo em {c} é {retValue}")
|
|
else:
|
|
continue
|
|
|
|
case "5":
|
|
c = filter_submenu("Mínimo")
|
|
|
|
if c is not None:
|
|
retValue = min_v(df, c)
|
|
print(f"O valor mínimo em {c} é {retValue}")
|
|
else:
|
|
continue
|
|
|
|
case "6":
|
|
c = filter_submenu("Mínimo")
|
|
|
|
if c is not None:
|
|
retValue = moda(df, c)
|
|
print(f"O valor moda em {c} é {retValue}")
|
|
else:
|
|
continue
|
|
|
|
case "q":
|
|
inStats = False
|
|
continue
|
|
|
|
case _:
|
|
pass
|
|
input("Clica `Enter` para continuar")
|
|
|
|
|
|
def average(df: pd.DataFrame, filter_by):
|
|
events = df.drop_duplicates(subset="ID", keep='first')
|
|
values = events[filter_by].to_numpy()
|
|
|
|
if filter_by == "Magnitudes":
|
|
values = _unpack_mags(values)
|
|
try:
|
|
return np.average(values)
|
|
except:
|
|
return None
|
|
|
|
|
|
def variance(df, filter_by):
|
|
events = df.drop_duplicates(subset="ID", keep='first')
|
|
values = events[filter_by].to_numpy()
|
|
|
|
if filter_by == "Magnitudes":
|
|
values = _unpack_mags(values)
|
|
|
|
try:
|
|
return np.var(values)
|
|
except:
|
|
return None
|
|
|
|
|
|
def std_dev(df, filter_by):
|
|
events = df.drop_duplicates(subset="ID", keep='first')
|
|
values = events[filter_by].to_numpy()
|
|
|
|
if filter_by == "Magnitudes":
|
|
values = _unpack_mags(values)
|
|
|
|
try:
|
|
return np.std(values)
|
|
except:
|
|
return None
|
|
|
|
|
|
def max_v(df, filter_by):
|
|
events = df.drop_duplicates(subset="ID", keep='first')
|
|
values = events[filter_by].to_numpy()
|
|
|
|
if filter_by == "Magnitudes":
|
|
values = _unpack_mags(values)
|
|
|
|
return np.max(values)
|
|
|
|
|
|
def min_v(df, filter_by):
|
|
events = df.drop_duplicates(subset="ID", keep='first')
|
|
values = events[filter_by].to_numpy()
|
|
|
|
if filter_by == "Magnitudes":
|
|
values = _unpack_mags(values)
|
|
|
|
return np.min(values)
|
|
|
|
|
|
def moda(df, filter_by):
|
|
events = df.drop_duplicates(subset="ID", keep='first')
|
|
values = events[filter_by].to_numpy()
|
|
|
|
if filter_by == "Magnitudes":
|
|
values = _unpack_mags(values)
|
|
|
|
uniques, count = np.unique(values, return_counts=True)
|
|
uniques_list = list(zip(uniques, count))
|
|
|
|
return sorted(uniques_list, reverse=True ,key=lambda x: x[1])[0][0]
|
|
|
|
|
|
def _unpack_mags(arr: np.ndarray):
|
|
newVals = np.empty(0)
|
|
for v in arr:
|
|
for m in v:
|
|
newVals = np.append(newVals, float(m["Magnitude"]))
|
|
return newVals
|
|
|