Files
prog-team-proj/utils/stats.py
2025-12-11 15:42:07 -01:00

177 lines
4.8 KiB
Python

# pyright: basic
import datetime
import numpy as np
import pandas as pd
import utils
def stats(df: pd.DataFrame) -> None:
"""Estatisticas para a DataFrame
:param df: DataFrame em questão"""
mags = mags_avg_std(df)
depth = depth_avg_std(df)
median_mags = median_mags(df)
def mags_avg_std(data: pd.DataFrame) -> tuple[np.floating, np.floating]:
"""Media e desvio-padrao das magnitudes
:param data: Dataframe com dados a filtrar
:returns: Tuple com a media e desvio-padrao
"""
filtered_data: pd.DataFrame = filter_mags(data)
vals = filtered_data["MagL"].to_numpy()
return (np.average(vals), np.std(vals))
def depth_avg_std(data: pd.DataFrame) -> tuple[np.floating, np.floating]:
"""Media e desvio-padrao das profundidades
:param data: Dataframe com dados a filtrar
:returns: Tuple com a media e desvio-padrao
"""
filtered_data: pd.DataFrame = filter_depth(data)
vals = np.average(filtered_data["Profundidade"].to_numpy())
return (np.average(vals), np.std(vals))
def median_mags(data: pd.DataFrame):
filtered_data: pd.DataFrame = filter_mags(data)
vals = sorted(filtered_data["MagL"].to_numpy())
quartil = len(vals) // 4
return (
filtered_data[quartil, :]["MagL"],
filtered_data[quartil * 2, :]["MagL"],
filtered_data[quartil * 3, :]["MagL"],
)
def filter_mags(data, more_than=None, less_than=None) -> pd.DataFrame:
"""Filters by magnitudes a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param more_than(optional): Filter for magnitudes above threshold
:param after(optional): Filters for dates after set date
:returns: Returns a filtered pandas DataFrame
"""
v = data.drop_duplicates(subset="ID", keep="first")
_dict = {"Data": [], "MagL": []}
for idx, c in v.iterrows():
_dict["Data"].append(str(c.Data))
_dict["MagL"].append(utils.extract_mag_l(c.Magnitudes))
_df = pd.DataFrame.from_dict(_dict)
if more_than:
_df = _df[_df["MagL"] >= more_than]
if less_than:
_df = _df[_df["MagL"] <= less_than]
return _df
def filter_date(
data: pd.DataFrame,
before: datetime.datetime | None = None,
after: datetime.datetime | None = None,
) -> pd.DataFrame:
"""Filters by date a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param before(optional): Filter for dates before set date
:param after(optional): Filters for dates after set date
:returns: Returns a filtered pandas DataFrame
"""
v = data
for idx, c in v.iterrows():
v.at[idx, "Data"] = datetime.datetime.fromisoformat(c.Data)
if after:
v = v[v["Data"] >= after]
if before:
v = v[v["Data"] >= before]
return v
def filter_depth(
data: pd.DataFrame,
less_than: float | None = None,
more_than: float | None = None,
) -> pd.DataFrame:
"""Filters by the depth a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param less_than(optional): Filter for depths below the threshold
:param after(optional): Filters for depths deeper than threshold
:returns: Returns a filtered pandas DataFrame
"""
v = data.drop_duplicates(subset="ID", keep="first")
if more_than:
v = v[v["Profundidade"] >= more_than]
if less_than:
v = v[v["Profundidade"] >= less_than]
return v
def filter_gap(
data: pd.DataFrame,
threshold: int,
) -> pd.DataFrame:
"""Filters by the depth a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:param threshold: Filter for GAPS below the threshold
:returns: Returns a filtered pandas DataFrame
"""
v = data.drop_duplicates(subset="ID", keep="first")
v = v[v["Gap"] <= threshold]
return v
def filter_sz(
data: pd.DataFrame,
) -> pd.DataFrame:
"""Filters by SZ plane a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:returns: Returns a filtered pandas DataFrame
"""
v = data[data["SZ"].notna()]
return v
def filter_vz(
data: pd.DataFrame,
) -> pd.DataFrame:
"""Filters by VZ plane a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame
:returns: Returns a filtered pandas DataFrame
"""
v = data[data["VZ"].notna()]
return v
def _preprare_days(data):
c = data.Data.to_list()
for idx, d in enumerate(c):
aux = datetime.datetime.fromisoformat(d)
c[idx] = datetime.datetime.strftime(aux, "%Y-%m-%d")
return c
def _preprare_months(data):
c = data.Data.to_list()
for idx, d in enumerate(c):
aux = datetime.datetime.fromisoformat(d)
c[idx] = datetime.datetime.strftime(aux, "%Y-%m")
return c