Files
prog-team-proj/utilsv2/stats.py
2026-01-04 18:51:37 -01:00

50 lines
1.4 KiB
Python

import time
import numpy as np
from pymongo import MongoClient
def print_filters(filters):
_res = ""
for k, v in filters.items():
_res += f"{k}: {v}\n"
def calculate_stats(data: list, filters):
_stats_txt = "Estatísticas\n"
_stats_txt += f"Número de eventos: {len(data)}\n"
_res = calc_mag(data)
_stats_txt += f"Magnitudes:\n\tMédia: {_res[0]} \u00b1 {_res[1]}\n\tMediana: {_res[2]}\n\tValor Mínimo: {_res[3]}\n\tValor Máximo: {_res[4]}\n"
_res = calc_depth(data)
_stats_txt += f"\nProfundidade:\n\tMédia: {_res[0]} \u00b1 {_res[1]}\n\tMediana: {_res[2]}\n\tValor Mínimo: {_res[3]}\n\tValor Máximo: {_res[4]}\n"
fname = f"stats-{time.time_ns()}.txt"
with open(fname, "wb") as fp:
fp.write(_stats_txt.encode("utf-8"))
print(_stats_txt)
def get_data(client: MongoClient):
pass
def calc_depth(data):
if len(data) == 0:
return 0
depths = np.array([v["Depth"] for v in data], dtype=float)
return (
np.average(depths),
np.std(depths),
np.median(depths),
np.min(depths),
np.max(depths),
)
def calc_mag(data):
if len(data) == 0:
return 0
mags = np.array([v["Magnitudes"]["L"]["Magnitude"] for v in data], dtype=float)
return (np.average(mags), np.std(mags), np.median(mags), np.min(mags), np.max(mags))