mais coisas de estatistica

This commit is contained in:
2025-12-11 15:25:51 -01:00
parent 14dee58ab2
commit b3d9a31792
3 changed files with 68 additions and 202 deletions

View File

@@ -1,7 +1,6 @@
import collections
import datetime
import numpy as np
import stats
from matplotlib import pyplot as plt

View File

@@ -1,210 +1,56 @@
# pyright: basic
import datetime
import os
import sys
import numpy as np
import pandas as pd
import utils
STAT_HEADER = """=== Terramotos ===
== Estatísticas ==
"""
STAT_MENU = """[1] Média
[2] Variância
[3] Desvio padrão
[4] Máximo
[5] Mínimo
[6] Moda
def stats(df: pd.DataFrame) -> None:
"""Estatisticas para a DataFrame
:param df: DataFrame em questão"""
[Q] Voltar ao menu principal
"""
mags = mags_avg_std(df)
depth = depth_avg_std(df)
FILTER_CHOICES = """[1] Magnitudes
[2] Distância
[3] Profundidade
"""
CHOICE = {"1": "Magnitudes", "2": "Distancia", "3": "Prof"}
median_mags = median_mags(df)
def filter_submenu(type: str):
os.system("cls" if sys.platform == "windows" else "clear")
print(f"{STAT_HEADER}\n = {type} = ")
print(FILTER_CHOICES)
choice = input("Qual dos valores: ")
try:
usrChoice = CHOICE[choice]
return usrChoice
except KeyError:
return None
def mags_avg_std(data: pd.DataFrame) -> tuple[np.floating, np.floating]:
"""Media e desvio-padrao das magnitudes
:param data: Dataframe com dados a filtrar
:returns: Tuple com a media e desvio-padrao
"""
filtered_data: pd.DataFrame = filter_mags(data)
vals = filtered_data["MagL"].to_numpy()
return (np.average(vals), np.std(vals))
def stat_menu(df: pd.DataFrame):
inStats = True
while inStats:
os.system("cls" if sys.platform == "windows" else "clear")
print(STAT_HEADER + "\n" + STAT_MENU)
usrIn = input("Opção: ").lower()
match usrIn:
case "1":
c = filter_submenu("Média")
if c is not None:
retValue = average(df, c)
if retValue:
print(f"A média de {c} é {retValue}")
else:
print("Um erro aconteceu. Nada a apresentar de momento.")
else:
continue
case "2":
c = filter_submenu("Variância")
if c is not None:
retValue = variance(df, c)
if retValue:
print(f"A variância dos dados de {c} é {retValue}")
else:
print("Um erro aconteceu. Nada a apresentar de momento.")
else:
continue
case "3":
c = filter_submenu("Desvio Padrão")
if c is not None:
retValue = std_dev(df, c)
if retValue:
print(f"O desvio padrão de {c} é {retValue}")
else:
print("Um erro aconteceu. Nada a apresentar de momento.")
else:
continue
case "4":
c = filter_submenu("Máximo")
if c is not None:
retValue = max_v(df, c)
print(f"O valor máximo em {c} é {retValue}")
else:
continue
case "5":
c = filter_submenu("Mínimo")
if c is not None:
retValue = min_v(df, c)
print(f"O valor mínimo em {c} é {retValue}")
else:
continue
case "6":
c = filter_submenu("Mínimo")
if c is not None:
retValue = moda(df, c)
print(f"O valor moda em {c} é {retValue}")
else:
continue
case "q":
inStats = False
continue
case _:
pass
input("Clica `Enter` para continuar")
def depth_avg_std(data: pd.DataFrame) -> tuple[np.floating, np.floating]:
"""Media e desvio-padrao das profundidades
:param data: Dataframe com dados a filtrar
:returns: Tuple com a media e desvio-padrao
"""
filtered_data: pd.DataFrame = filter_depth(data)
vals = np.average(filtered_data["Profundidade"].to_numpy())
return (np.average(vals), np.std(vals))
def average(df: pd.DataFrame, filter_by):
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
def median_mags(data: pd.DataFrame):
filtered_data: pd.DataFrame = filter_mags(data)
vals = sorted(filtered_data["MagL"].to_numpy())
if filter_by == "Magnitudes":
values = _unpack_mags(values)
try:
return np.average(values)
except:
return None
quartil = len(vals) // 4
return (
filtered_data[quartil, :]["MagL"],
filtered_data[quartil * 2, :]["MagL"],
filtered_data[quartil * 3, :]["MagL"],
)
def variance(df, filter_by):
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
try:
return np.var(values)
except:
return None
def std_dev(df, filter_by):
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
try:
return np.std(values)
except:
return None
def max_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.max(values)
def min_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.min(values)
def moda(df, filter_by):
events = df.drop_duplicates(subset="ID", keep="first")
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
uniques, count = np.unique(values, return_counts=True)
uniques_list = list(zip(uniques, count))
return sorted(uniques_list, reverse=True, key=lambda x: x[1])[0][0]
def _unpack_mags(arr: np.ndarray):
newVals = np.empty(0)
for v in arr:
for m in v:
newVals = np.append(newVals, float(m["Magnitude"]))
return newVals
def filter_mags(data, more_than=None, less_than=None):
def filter_mags(data, more_than=None, less_than=None) -> pd.DataFrame:
"""Filters by magnitudes a DataFrame into a new Dataframe
:param data: Raw pandas DataFrame