Mais coisas, estatisticas
This commit is contained in:
154
ev2.py
154
ev2.py
@@ -1,12 +1,152 @@
|
||||
import logging
|
||||
import os
|
||||
from enum import Enum
|
||||
|
||||
from utilsv2 import mongo
|
||||
from utilsv2 import mongo, stats
|
||||
from utilsv2.log import logger
|
||||
from utilsv2.parser import parse
|
||||
from utilsv2.utils import toDateTime, toFloat, toInt
|
||||
|
||||
OS = os.name
|
||||
|
||||
|
||||
MAIN_MENU = {
|
||||
"1": "Adicionar novos dados",
|
||||
"2": "Aplicar filtros",
|
||||
"3": "Estatísticas",
|
||||
"4": "Limpar filtros",
|
||||
"q": "Sair",
|
||||
}
|
||||
|
||||
FILTER_MENU = {
|
||||
"1": "Data início",
|
||||
"2": "Magnitudes",
|
||||
"3": "Profundidade",
|
||||
"4": "GAP",
|
||||
"6": "Limpar filtros",
|
||||
"7": "Mostrar filtros",
|
||||
"q": "Voltar ao menu principal",
|
||||
}
|
||||
|
||||
|
||||
def clear_screen():
|
||||
os.system("cls" if OS == "nt" else "clear")
|
||||
|
||||
|
||||
def print_menu(menu: dict[str, str]):
|
||||
clear_screen()
|
||||
for k, v in menu.items():
|
||||
print(f"[{k}]: {v}")
|
||||
|
||||
|
||||
def filter_menu(old_fiters):
|
||||
filters = old_fiters
|
||||
while True:
|
||||
print_menu(FILTER_MENU)
|
||||
usrIn = input()
|
||||
|
||||
match usrIn:
|
||||
# datas
|
||||
case "1":
|
||||
clear_screen()
|
||||
print(
|
||||
"Formato da data: YYYY-MM-DD\nInserir datas de corte, separadas por uma vírgula(,)"
|
||||
)
|
||||
aux = input()
|
||||
|
||||
d1, d2 = aux.split(",", maxsplit=1)
|
||||
|
||||
d1 = toDateTime(d1)
|
||||
d2 = toDateTime(d2)
|
||||
filters["DateTime"] = {}
|
||||
|
||||
if d1 != -1:
|
||||
filters["DateTime"]["$gte"] = d1
|
||||
|
||||
if d2 != -1:
|
||||
filters["DateTime"]["$lte"] = d2
|
||||
|
||||
# magnitudes
|
||||
case "2":
|
||||
clear_screen()
|
||||
print("Inserir magnitudes de corte, separadas por uma vírgula(,)")
|
||||
aux = input()
|
||||
|
||||
d1, d2 = aux.split(",", maxsplit=1)
|
||||
|
||||
d1 = toFloat(d1)
|
||||
d2 = toFloat(d2)
|
||||
filters["Magnitudes.L.Magnitude"] = {}
|
||||
|
||||
if d1 != -1:
|
||||
filters["Magnitudes.L.Magnitude"]["$gte"] = d1
|
||||
|
||||
if d2 != -1:
|
||||
filters["Magnitudes.L.Magnitude"]["$lte"] = d2
|
||||
case "2":
|
||||
clear_screen()
|
||||
print("Inserir profundidades de corte, separadas por uma vírgula(,)")
|
||||
aux = input()
|
||||
|
||||
d1, d2 = aux.split(",", maxsplit=1)
|
||||
|
||||
d1 = toFloat(d1)
|
||||
d2 = toFloat(d2)
|
||||
filters["Depth"] = {}
|
||||
|
||||
if d1 != -1:
|
||||
filters["Depth"]["$gte"] = d1
|
||||
|
||||
if d2 != -1:
|
||||
filters["Depth"]["$lte"] = d2
|
||||
|
||||
case "4":
|
||||
clear_screen()
|
||||
print("Inserir GAP")
|
||||
aux = input()
|
||||
|
||||
gap = toInt(aux)
|
||||
if aux:
|
||||
filters["GAP"]["$lte"] = gap
|
||||
|
||||
case "6":
|
||||
fliters = {}
|
||||
|
||||
case "7":
|
||||
print(filters)
|
||||
|
||||
case "q":
|
||||
return filters
|
||||
|
||||
|
||||
def graph_menu():
|
||||
pass
|
||||
|
||||
|
||||
def main():
|
||||
pass
|
||||
cli = mongo.connect("mongodb://localhost:27017")
|
||||
|
||||
filters = {}
|
||||
|
||||
while True:
|
||||
print_menu(MAIN_MENU)
|
||||
usrIn = input()
|
||||
|
||||
match usrIn:
|
||||
case "1":
|
||||
raise NotImplementedError
|
||||
case "2":
|
||||
filters = filter_menu(filters)
|
||||
case "3":
|
||||
print(filters)
|
||||
v = mongo.filter_query(cli, "quakes", filters, "test")
|
||||
stats.calculate_stats(v, filters)
|
||||
input()
|
||||
|
||||
case "q":
|
||||
break
|
||||
|
||||
mongo.close(cli)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -14,13 +154,5 @@ if __name__ == "__main__":
|
||||
|
||||
# initialization
|
||||
logger.info("Started")
|
||||
cli = mongo.connect("mongodb://localhost:27017")
|
||||
|
||||
evs, stats = parse("dados.txt")
|
||||
|
||||
mongo.add_events(cli, "quakes", evs)
|
||||
mongo.add_stations(cli, "stations", stats)
|
||||
|
||||
# cleanup
|
||||
mongo.close(cli)
|
||||
main()
|
||||
logger.info("Ended")
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
dash==3.3.0
|
||||
matplotlib==3.10.8
|
||||
numpy==2.3.5
|
||||
pandas==2.3.3
|
||||
plotly==6.5.0
|
||||
numpy==2.4.0
|
||||
pymongo==4.15.5
|
||||
|
||||
17
utilsv2/graphs.py
Normal file
17
utilsv2/graphs.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
class Plotter:
|
||||
pass
|
||||
|
||||
def plot_bars(self):
|
||||
pass
|
||||
|
||||
def plot_lin(self):
|
||||
pass
|
||||
|
||||
def plot_box(self):
|
||||
pass
|
||||
|
||||
def adjust_x(self):
|
||||
pass
|
||||
@@ -14,7 +14,7 @@ except ModuleNotFoundError:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def connect(uri) -> MongoClient:
|
||||
def connect(uri: str) -> MongoClient:
|
||||
try:
|
||||
client = MongoClient(uri)
|
||||
logger.info("Connected to the DB")
|
||||
@@ -26,10 +26,9 @@ def connect(uri) -> MongoClient:
|
||||
|
||||
|
||||
def add_events(
|
||||
client: MongoClient, collection: str, data: list[dict[str, Any]]
|
||||
client: MongoClient, collection: str, data: list[dict[str, Any]], db: str = "main"
|
||||
) -> None:
|
||||
db = client["main"]
|
||||
coll = db[collection]
|
||||
coll: Collection = client[db][collection]
|
||||
|
||||
_res = coll.insert_many(data)
|
||||
|
||||
@@ -40,10 +39,9 @@ def add_events(
|
||||
|
||||
|
||||
def add_stations(
|
||||
client: MongoClient, collection: str, data: list[dict[str, Any]]
|
||||
client: MongoClient, collection: str, data: list[dict[str, Any]], db: str = "main"
|
||||
) -> None:
|
||||
db = client["main"]
|
||||
coll = db[collection]
|
||||
coll: Collection = client[db][collection]
|
||||
|
||||
_res = coll.insert_many(data)
|
||||
|
||||
@@ -62,19 +60,28 @@ def close(client: MongoClient) -> None:
|
||||
logger.info("Closed the DB.")
|
||||
|
||||
|
||||
def query_all(cli: MongoClient, collection: str) -> Any:
|
||||
coll: Collection = cli.main[collection]
|
||||
def query_all(client: MongoClient, collection: str, db: str = "main") -> Any:
|
||||
coll: Collection = client[db][collection]
|
||||
|
||||
result = coll.find({})
|
||||
|
||||
for doc in result:
|
||||
print(doc)
|
||||
return list(result)
|
||||
|
||||
|
||||
def filter_query(cli: MongoClient, collection: str, filter_by):
|
||||
coll: Collection = cli.main[collection]
|
||||
def filter_query(
|
||||
client: MongoClient, collection: str, filter_by: dict[str, Any], db: str = "main"
|
||||
):
|
||||
coll: Collection = client[db][collection]
|
||||
|
||||
res = coll.find({""})
|
||||
res = coll.find(
|
||||
filter_by, {"DateTime": 1, "Magnitudes": 1, "Depth": 1, "GAP": 1}
|
||||
).sort({"DateTime": 1})
|
||||
|
||||
if not res._empty:
|
||||
res = list(res)
|
||||
logger.info(f"Retrieved {len(res)} elements.")
|
||||
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
49
utilsv2/stats.py
Normal file
49
utilsv2/stats.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from pymongo import MongoClient
|
||||
|
||||
|
||||
def print_filters(filters):
|
||||
_res = ""
|
||||
for k, v in filters.items():
|
||||
_res += f"{k}: {v}\n"
|
||||
|
||||
|
||||
def calculate_stats(data: list, filters):
|
||||
_stats_txt = "Estatísticas\n"
|
||||
_stats_txt += f"Número de eventos: {len(data)}\n"
|
||||
_res = calc_mag(data)
|
||||
_stats_txt += f"Magnitudes:\n\tMédia: {_res[0]} \u00b1 {_res[1]}\n\tMediana: {_res[2]}\n\tValor Mínimo: {_res[3]}\n\tValor Máximo: {_res[4]}\n"
|
||||
_res = calc_depth(data)
|
||||
_stats_txt += f"\nProfundidade:\n\tMédia: {_res[0]} \u00b1 {_res[1]}\n\tMediana: {_res[2]}\n\tValor Mínimo: {_res[3]}\n\tValor Máximo: {_res[4]}\n"
|
||||
|
||||
fname = f"stats-{time.time_ns()}.txt"
|
||||
with open(fname, "wb") as fp:
|
||||
fp.write(_stats_txt.encode("utf-8"))
|
||||
|
||||
print(_stats_txt)
|
||||
|
||||
|
||||
def get_data(client: MongoClient):
|
||||
pass
|
||||
|
||||
|
||||
def calc_depth(data):
|
||||
if len(data) == 0:
|
||||
return 0
|
||||
depths = np.array([v["Depth"] for v in data], dtype=float)
|
||||
return (
|
||||
np.average(depths),
|
||||
np.std(depths),
|
||||
np.median(depths),
|
||||
np.min(depths),
|
||||
np.max(depths),
|
||||
)
|
||||
|
||||
|
||||
def calc_mag(data):
|
||||
if len(data) == 0:
|
||||
return 0
|
||||
mags = np.array([v["Magnitudes"]["L"]["Magnitude"] for v in data], dtype=float)
|
||||
return (np.average(mags), np.std(mags), np.median(mags), np.min(mags), np.max(mags))
|
||||
@@ -1,2 +1,32 @@
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
def is_empty(_str: str) -> bool:
|
||||
return len(_str.strip(" ")) == 0
|
||||
|
||||
|
||||
def toDateTime(dt: str) -> datetime | int:
|
||||
if len(dt) == 0:
|
||||
return -1
|
||||
try:
|
||||
return datetime.strptime(dt, "%Y-%m-%d")
|
||||
except ValueError:
|
||||
return -1
|
||||
|
||||
|
||||
def toFloat(v: str) -> float:
|
||||
if len(v) == 0:
|
||||
return -1.0
|
||||
try:
|
||||
return float(v)
|
||||
except ValueError:
|
||||
return -1.0
|
||||
|
||||
|
||||
def toInt(v: str) -> int | None:
|
||||
if len(v) == 0:
|
||||
return None
|
||||
try:
|
||||
return int(v)
|
||||
except ValueError:
|
||||
return None
|
||||
|
||||
Reference in New Issue
Block a user