Compare commits

..

4 Commits

Author SHA1 Message Date
31563ed0da Merge changes 2025-11-09 20:56:41 -01:00
8fa3b1ec10 Misc 2025-11-09 20:50:28 -01:00
smolsbs
ef2cdfdc6f Merge pull request #3 from aulojor/main
feat: adicionar o delete_table_row ao menu
2025-11-09 20:50:05 -01:00
aulojor
d83a953a12 feat: adicionar o delete_table_row ao menu 2025-11-09 20:44:38 -01:00
4 changed files with 121 additions and 28 deletions

View File

@@ -104,7 +104,13 @@ def main():
retInfo = "ID do event não encontrado!"
else:
db = crud.delete_event(db, eid_choice)
table = crud.get_table(db, eid_choice)
crud.show_table(table)
row_choice = _get_usr_input("Escolhe a linha a apagar:", int)
db = crud.delete_table_row(db, eid_choice, row_choice)
new_table = crud.get_table(db, eid_choice)
crud.show_table(new_table)
print(f"Linha {row_choice} apagada com sucesso!")
input()
else:
@@ -146,7 +152,7 @@ def main():
case "8":
if db is not None:
pass
stats.stat_menu(db)
else:
retInfo = "Base de dados não encontrada!"
@@ -180,6 +186,9 @@ def _get_usr_input(msg:str, asType=str):
return None
return asType(usrIn)
def _prettify_event(df):
preambleInfo = df.drop_duplicates(subset="ID", keep="first")
stations = df[["Estacao", "Componente", "Tipo Onda", "Amplitude"]]
if __name__ == '__main__':
main()

View File

@@ -8,7 +8,7 @@ pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 150)
HEADER_COLS = ["Data", "Distancia", "Tipo Ev", "Lat", "Long", "Prof", "Magnitudes"]
TABLE_READ_RET = ["Data", "Lat", "Long", "Distancia", "Tipo Ev"]
TABLE_READ_RET = ["Data", "Lat", "Long", "Distancia", "Tipo Ev", "Amplitude"]
def _get_uniques(df) -> pd.DataFrame:
return df.get(["ID", "Data", "Regiao"]).drop_duplicates(subset="ID", keep="first")
@@ -40,7 +40,6 @@ def read_header(df, event_id):
def show_table(df, retCols=TABLE_READ_RET):
print(df.loc[:,retCols])
def get_table(df, event_id):
rows = df[df["ID"] == event_id]
rows = rows.drop("ID", axis=1)
@@ -86,13 +85,9 @@ def delete_event(df, event_id):
print(f"Evento {event_id} apagado!")
return new_df
def delete_table_row(df, event_id, row_number_1):
def delete_table_row(df, event_id, row_number):
# Apaga uma linha específica da tabela do evento
row_number_0 = row_number_1 - 1
table = get_table(df, event_id)
if row_number_0 < 0 or row_number_0 >= len(table):
return f"Linha {row_number_1} não pertence ao evento {event_id}."
new_df = df.drop(table.index[row_number_0])
new_df = df.drop([row_number]).reset_index(drop=True)
return new_df
def create_blank_event(df, event_id):

View File

@@ -191,4 +191,3 @@ def _parse_type_i(data: list[str]):
FUNCS = {1: _parse_type_1, 3: _parse_type_3, 6: _parse_type_6, "E": _parse_type_e, "I": _parse_type_i}
parse("dados.txt")

View File

@@ -5,45 +5,119 @@ import os
import pandas as pd
import numpy as np
STAT_MENU = """=== Earthquakes ===
STAT_HEADER ="""=== Earthquakes ===
== Estatísticas ==
[1] Média
"""
STAT_MENU = """[1] Média
[2] Variância
[3] Desvio padrão
[4] Máximo
[5] Mínimo
[6] Moda
[Q] Voltar ao menu principal
"""
FILTER_CHOICES = """[1] Magnitudes
[2] Distância
[3] Profundidade
"""
CHOICE = {"1": "Magnitudes", "2": "Distancia","3": "Prof"}
def filter_submenu(type: str):
os.system("cls")
print(f"{STAT_HEADER}\n = {type} = ")
print(FILTER_CHOICES)
choice = input("Qual dos valores: ")
try:
usrChoice = CHOICE[choice]
return usrChoice
except KeyError:
return None
def stat_menu(df: pd.DataFrame):
inStats = True
while inStats:
os.system("cls")
print(STAT_MENU)
print(STAT_HEADER + "\n" + STAT_MENU)
usrIn = input("Opção: ").lower()
match usrIn:
case "1":
pass
# TODO: verificar se estamos a tratar de numeros ou strings
c = filter_submenu("Média")
if c is not None:
retValue = average(df, c)
print(f"A média de {c} é {retValue}")
else:
continue
case "2":
pass
c = filter_submenu("Variância")
if c is not None:
retValue = variance(df, c)
print(f"A variância dos dados de {c} é {retValue}")
else:
continue
case "3":
pass
# TODO: verificar se estamos a tratar de numeros ou strings
c = filter_submenu("Desvio Padrão")
if c is not None:
retValue = std_dev(df, c)
print(f"O desvio padrão de {c} é {retValue}")
else:
continue
case "4":
pass
c = filter_submenu("Máximo")
if c is not None:
retValue = max_v(df, c)
print(f"O valor máximo em {c} é {retValue}")
else:
continue
case "5":
pass
c = filter_submenu("Mínimo")
if c is not None:
retValue = min_v(df, c)
print(f"O valor mínimo em {c} é {retValue}")
else:
continue
case "6":
c = filter_submenu("Mínimo")
if c is not None:
retValue = moda(df, c)
print(f"O valor moda em {c} é {retValue}")
else:
continue
case "q":
inStats = False
pass
continue
case _:
pass
input("Clica Enter para continuar")
def average(df: pd.DataFrame, filter_by):
values = df[filter_by].to_numpy()
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
@@ -52,7 +126,8 @@ def average(df: pd.DataFrame, filter_by):
def variance(df, filter_by):
values = df[filter_by].to_numpy()
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
@@ -61,7 +136,8 @@ def variance(df, filter_by):
def std_dev(df, filter_by):
values = df[filter_by].to_numpy()
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
@@ -69,8 +145,9 @@ def std_dev(df, filter_by):
return np.std(values)
def max(df, filter_by):
values = df[filter_by].to_numpy()
def max_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
@@ -78,19 +155,32 @@ def max(df, filter_by):
return np.max(values)
def min(df, filter_by):
values = df[filter_by].to_numpy()
def min_v(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
return np.min(values)
def moda(df, filter_by):
events = df.drop_duplicates(subset="ID", keep='first')
values = events[filter_by].to_numpy()
if filter_by == "Magnitudes":
values = _unpack_mags(values)
uniques, count = np.unique(values, return_counts=True)
uniques_list = list(zip(uniques, count))
return sorted(uniques_list, reverse=True ,key=lambda x: x[1])[0][0]
def _unpack_mags(arr: np.ndarray):
newVals = np.empty(0)
for v in arr:
for m in v:
newVals = np.append(newVals, np.float32(m["Magnitude"]))
newVals = np.append(newVals, float(m["Magnitude"]))
return newVals